Review for solution, electrolyte and pH test

Solutions:

1. To reduce tooth decay, some cities add fluoride to their drinking water. An employee in charge of drinking water fluoridation in a big city dissolved 48 g of fluoride in 50000 L of water. What is the fluoride concentration of the water in ppm ?

2. Public pools usually contain about 7 ppm of chlorine to control bacterial growth. If your pool can hold 39000 L of water, how much chlorine should there be in the water?

3. You test the quality of drinking water in your house by taking a 250 mL sample. You find it contains 850 mg of contaminant. What is the concentration of the contaminant in $\%$?

4. The lethal concentration of nitrate $\left(\mathrm{NO}_{3}^{-}\right)$is $0.04 \mathrm{~g} / \mathrm{L}$ and phosphate's $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ lethal concentration is $0.3 \mathrm{mg} / \mathrm{L}$. This means that in a pond, if the concentrations of nitrate or phosphate are over the values given, certain types of aquatic organisms will die.
You test the water and get the following values:
(1) Nitrate has a concentration of 45 ppm

Phosphate has a concentration of 0.15 ppm
Determine if the pond contains any lethal doses.
nitrate

have lethal

$$
\frac{\text { have }}{0.045 \mathrm{~g} / \mathrm{L}}>\frac{\text { lethal }}{0.04 \mathrm{~g} / \mathrm{L}}
$$

yes: lethal
$0.15 \mathrm{mg} / \mathrm{L}<0.3 \mathrm{mg} / L$

5. An antiseptic mouth wash contains a medical ingredient called thymol. A 100 mL bottle of this mouthwash contains 63 mg of thymol. What is the concentration of thymol, in ppm , in this mouthwash?

$$
\begin{aligned}
& \frac{63 \mathrm{mg}}{100 \mathrm{ml}} ; \frac{x \mathrm{mg}}{1000 \mathrm{ml}} \rightarrow 630 \Rightarrow 630 \mathrm{mg} / \mathrm{L}=6.30 \mathrm{ppm} \\
& \frac{63 \mathrm{mg}}{100 \mathrm{ml}} \div \frac{1000}{100 \mathrm{ml}} ; \frac{1069}{1000000 \mathrm{ml}} \Rightarrow 630
\end{aligned}
$$

6. Measurements in atmospheric concentrations of various substances show that the amount of CO_{2} and other pollutants has increased significantly in the past 260 years.

Table 1 -Changes in atmospheric pollutant concentrations

Substance	Formula	Concentration before 1750	Concentration in 2010	
$\uparrow 102$ ppm	carbon dioxide	$\left(\mathrm{CO}_{2}\right)$	287 ppm	0.0389%
$\uparrow 440$ pp	nitrous oxide	$\left(\mathrm{N}_{2} \mathrm{O}\right)$	0.270%	$3.14 \mathrm{~g} / \mathrm{L}$
methane	$\left(\mathrm{CH}_{4}\right)$	438 ppm	720 meg ppm	

Determine which of the pollutants in Table 1 has shown the greatest increase in concentration in the past 260 years. Justify your answer with the appropriate calculations.

$$
\mathrm{CO}_{2}\left(10.0389 \% \rightarrow \frac{0.0389 \mathrm{~g}}{100 \mathrm{ml}}: \frac{x 9}{1000000 \mathrm{ml}} \rightarrow 389 \mathrm{~g} \rightarrow 389 \mathrm{ppm}\right.
$$

(2) $389-287=102$ 102 ppm \uparrow
$\mathrm{N}_{2} \mathrm{O}(1) \frac{0.2709}{100 \mathrm{ml}}: \frac{x 9}{1000000 \mathrm{ml}}$

$$
\Rightarrow 2700 \mathrm{~g} \Rightarrow 2700 \mathrm{ppm}\{1750
$$

3140
(2) $\left.\frac{3.14 \mathrm{~g}}{1000 \mathrm{ml}}: \frac{x 9}{1000000 \mathrm{ml}} \rightarrow 3140 \mathrm{~g} \Rightarrow 3140 \mathrm{ppm}\right\} \begin{aligned} & \text { year } \\ & 2010\end{aligned}$

$$
\frac{-2700}{440 \mathrm{ppm}}
$$

$$
720 \mathrm{ppm}-438 \mathrm{ppm}=282 \mathrm{ppm}
$$

$$
\begin{aligned}
& \text { The concentration } \\
& \text { of nitrous oxide }
\end{aligned}
$$

7. Choose the answer that best explains the following concentrations increased the most
$\frac{109: 1009}{100: 1009}$
$\begin{aligned} & \text { A) the } 100 \mathrm{~g} / \mathrm{L} \text { solution is the most concentrated solution } \\ & \text { B) the } 10 \% \text { and the } 40 \mathrm{~g} / 400 \mathrm{~mL} \text { concentrations are equal }\end{aligned} \rightarrow \frac{40 \mathrm{~g}}{400 \mathrm{ml}}: \frac{\times \mathrm{g}}{1000 \mathrm{ml}} \rightarrow 100 \mathrm{~g} / \mathrm{L}$
C) the order from weakest to strongest is $10 \%, 40 \mathrm{~g} / 400 \mathrm{~mL}$ and $100 \mathrm{~g} / \mathrm{L}$
D) they are all equal concentrations
8. The concentrations of four solutions are given in the following table.

Solution	Concentration		
1	$20 \mathrm{~g} / \mathrm{L}$		
2	0.4 gL		
3	$5 \mathrm{~g} / 100 \mathrm{~mL}$		
4	$3 \mathrm{~g} / 500 \mathrm{~mL}$	\rightarrow	$\frac{0.4 \mathrm{~g}}{1 \mathrm{ml}}: \frac{x \mathrm{~g}}{1000 \mathrm{ml}} \Rightarrow 400 \mathrm{~g}$
:---			
ancentrated?	$\rightarrow \frac{5 \mathrm{~g}}{100 \mathrm{ml}}: \frac{\times \mathrm{g}}{100 \mathrm{ml}} \Rightarrow 50 \mathrm{~g}$		

Which solution is the most concentrated?
A) 1
(B) 2
C) 3
2. Listed below are several different concentrations of solutions of coffee :
D) 4
3. $45.0 \mathrm{~g} / 675.0 \mathrm{ml}{ }^{6.07}$
${ }_{9} c=\frac{m}{V}$
0.075^{2} 2. $60.0 \mathrm{~g} / 800.0 \mathrm{ml}$
4. $75.0 \mathrm{~g} / 825.0 \mathrm{ml} 0.09 \mathrm{~V}$

List the concentrations in increasing order. \longrightarrow smallest \rightarrow highest $3-2-4-1$
A) 1,2,3 and 4
B) $3,2,4$ and 1
C) 3, 4, 2 and 1
D) 2, 3, 4 and 1

```
\frac{6g}{100me}:}\frac{xg}{500me
```

10. A pharmacist wants to prepare 500 mL of an antibiotic solution. The concentration of the solution must be 6%. What mass of the antibiotic must she use?
A) 1.2 g
B) 3 g
C) 6 g
D) 30 g
11. A student makes a 1 L pitcher of Kool-Aid and pours himself 200 mL into a glass. Which statement best explains the relationship between the concentration of Kool-Aid in the pitcher and the concentration of Kool-Aid in the glass?
A) The Kool-Aid in the glass is more concentrated than the Kool-Aid in the pitcher.
B) The Kool-Aid in the glass is less concentrated than the Kool-Aid in the pitcher.

C) The Kool-Aid in the glass is more diluted than the Kool-Aid in the pitcher.
(D) The Kool-Aid in the glass has the same concentration as the Kool-Aid in the pitcher.

Electrolytes:

1. The table below shows the results for four liquids when tested with Litmus paper and a conductivity meter.

Red Litmus paper	Liquid AStays red	Liquid B	Liquid C	Liquid D
		Liguid B		
		Stays red	Stays red	Turns blue
Blue Litmus paper	Turns red	Stays blue	Stays blue	Stays blue
Conductivity	Light turns on	Light turns on	Light stays off	Light turns on

The four liquids tested were $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HCl}, \mathrm{CaCl}_{2}$ and $\mathrm{Mg}(\mathrm{OH})_{2}$.
Using the results from the table above, match each liquid (A, B, C and D) with the correct molecular formula $\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HCl}, \mathrm{CaCl}_{2}\right.$ or $\left.\mathrm{Mg}(\mathrm{OH})_{2}\right)$.
2. What is an electrolyte? Which substances are electrolytes? A substance that, when dissolved in water, conducts electricity.
acids, bases, salts
3. Fill in the table. Give the pH range or number.

	$\mathrm{Ca}(\mathrm{OH})_{2}$	CaCl_{2}	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HCl	NCl_{3}	NaCl
Acid, base, salt or non- electrolyte	B	S	A	NE	A	A	NE	S
pH range or \#	>7	7	<7	7	<7	<7	7	7
Electrolyte or Non-elect.	$e l e c$.	elec.	elec.	non-el.	elle.	elec.	non-e	elec.

4. You want to neutralize something with a pH of 4 , what would you use?
A) water
B) an acid
C) something with a pH of 7
(D) $\mathrm{Mg}(\mathrm{OH})_{2}$

5. Which of the following substances would you use to clean greasy dishes?
A) KCl
B) HCl
C) KOH
D) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
6. Alice frequently uses a white cleaning powder in her home. She wants to know whether this substance is acidic, basic or neutral. In order to determine the pH of this substance, what is the first thing she must do?
A) Put a piece of blue litmus paper on the solid.
B) Put a piece of red litmus paper on the solid.
C) Verify whether the solid conducts electricity.
D) Dissolve a small amount of the solid in water.
7. Some common substances are listed below.
8. vinegar \checkmark
9. soft drinks
10. distilled water
11. tomato juice
12. seawater

Which of the substances have a pH that is less than 7 ?
A) 1,2 , and 3
B) 1,3, and 4
C) 1, 4, and 5
D) 2, 3, and 5
8. A student is testing the conductivity of a solution. She observes that the solution conducts electricity. Which of the following combinations includes ONLY substances that will cause the solution to
conduct electricity?
A) $\mathrm{HF}, \mathrm{LiOH}, \mathrm{KBr} \checkmark$
C) $\mathrm{BeF}_{2}, \mathrm{CCl}_{4}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
B) $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CCl}_{4}, \mathrm{C}_{6} \mathrm{H}_{\times 2} \mathrm{O}_{6}$
D) $\mathrm{LiOH}, \mathrm{NaCl}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
9. Which of the following, when dissolved in water, is an electrolyte?
A) CO_{2}
(B) HNO_{3}
C) $\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
10. Which of the following, when dissolved in water, will be a non-electrolyte?
A) KCl
B) HCl
C) KOH
(D) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
11. The electrical conductivity of several aqueous solutions were tested in the laboratory using the apparatus below.

Which of the following lists the aqueous solutions that would allow the current to flow? acids,
A) $\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2}, \mathrm{LiF}$
C) $\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{CaCl}_{2}, \mathrm{HBr}, \mathrm{LiF}$
D) $\mathrm{CaCl}_{2}, \mathrm{HBr}, \mathrm{H}_{2} \mathrm{O}$
bases. salts
12. Which of the following molecules is a salt?
(A) KBr
B) LiOH
C) HNO_{3}
D) SO_{2}
13. The incomplete table gives information on three aqueous solutions.

Information on Different Aqueous Solutions

Solution	Chemical formula of solute	pH	Electrical conductivity
1		2	
2			acid.
3	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$		weak
non-eeec			

Using the information in the table above, which of the following statements is true?
A) Only solution 1 conducts an electric current. \times
(B) Solutions 1 and 2 conduct an electric current. \checkmark
C) Solutions 2 and 3 conduct an electric current.
D) Solutions 1,2 and 3 conduct an electric current
14. Which of the following are characteristic properties of a basic solution?

1. Conducts electricity
2. Turns litmus paper red
3. Does not conduct electricity
4. Does not change the colour of litmus paper
5. Turns litmus paper blue
(A) 1 and 3
B) 1 and 4
C) 2 and 3
D) 2 and 5
6. To check the electrical conductivity of certain liquids, a student used a conductivity apparatus equipped with a light bulb. Using the table of information, determine which substances are electrolytes.

Substances	Observations
HCl	Bright light $\quad \checkmark$
$\mathrm{CH}_{3} \mathrm{OH}$	No light $\quad \times$
MgCl_{2}	Faint light $\quad \checkmark$
NaOH	Bright light $\quad \checkmark$
$\mathrm{Ca}(\mathrm{OH})_{2}$	Faint light $\quad \checkmark$
CCl_{4}	No light $\quad \times$

A) $\mathrm{CH}_{3} \mathrm{OH}$ and CCl_{4}
B) $\mathrm{HCl}, \mathrm{MgCl}_{2}$ and $\mathrm{CCl}_{4} \times$
C) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{NaOH}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$
D) $\mathrm{HCl}, \mathrm{MgCl}_{2}, \mathrm{NaOH}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$
16. The lab technician stores chemicals according to their type. Which column contains the chemicals correctly classified as acids, bases and salts.

	A	B	C	D
Acids	$\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCl}$	$\mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}$	$\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}^{\wedge}$
Bases	$\mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}$	$\mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}{ }^{\text {² }}$	$\mathrm{NaCl}, \mathrm{KClO}_{3}$	$\mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}$
salts	$\mathrm{NaCl}, \mathrm{HCl}$,	$\mathrm{NaCl}, \mathrm{KClO}_{3}$	$\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Na}_{2} \mathrm{SO}_{4}$	$\mathrm{NaCl}, \mathrm{KClO}_{3}$

17. Which of the following procedures can be used to determine whether sugar is an electrolyte or a nonelectrolyte?
A) Check the electrical conductivity of a cube of sugar.
B) Check the electrical conductivity of powdered sugar.
(C) Check the electrical conductivity of an aqueous sugar solution.
D) Check the electrical conductivity of a heterogeneous mixture of sugar and alcohol.
18. We wish to demonstrate that some substances conduct electricity in certain situations. What substance must we add to distilled water to demonstrate this fact?
A) Vegetable oil
B) Lemon juice
C) Icing sugar
D) Food colouring
19. Four different solutions made with distilled water are described below.

Solution	Characteristic	
1	Aqueous solution with a pH of 11	base
2	Vinegar solution $\left(\mathrm{HCH}_{3} \mathrm{COO}\right)$	\checkmark
3	Glucose solution $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$	\times
4	anic solution with a pH of 7	\checkmark

Which of these solutions can conduct an electric current?
A) Solutions 1, 2 and 3
C) Solutions 1, 3 and 4
B) Solutions 2, 3 and 4
D) Solutions 1,2 and 4
20. Solutions can be categorized as non-electrolytes, weak electrolytes and strong electrolytes. Glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is a non-electrolyte when dissolved in water. Citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$, the acid in orange juice, is a weak electrolyte when dissolved in water. Hydrochloric acid, HCl , sometimes known as stomach acid, is a strong electrolytè. A drawing of these particles in three different solutions is shown below.

Which of the following correctly identifies the solutions in each of the beakers?

	Beaker 1	Beaker 2	Beaker 3
A)	Glucose	Hydrochloric acid	Citric acid
B)	Hydrochloric acid	Citric acid	Glucose
C)	Citric acid	Hydrochloric acid	Glucose
D	Glucose	Citric acid	Hydrochloric acid

pH :

1. In order to make apple juice from apple cider, the cider is filtered and then the following ingredients are added:
-1 stick of cinnamon -6 whole cloves -4 strips of orange rind

- Enough brown sugar to have a sugar concentration of $205.71 \mathrm{~g} / \mathrm{L}$

The mixture is then heated in a pot at low temperature for 20 minutes.
A) How much sugar needs to be added to a 1.75 L pitcher of filtered cider?

$$
\frac{205.71 \mathrm{~g}}{1000 \mathrm{ml}}: \frac{\times 9}{1750 \mathrm{ml}} \rightarrow 3 \mathrm{~g}
$$

B) Often, to make apple juice less acidic, another juice is added to it. Apple juice normally has a pH of 3 . Which of the following products should be mixed with the apple juice in order to obtain a liquid with a pH that is almost neutral? Justify your answer.
Berry juice pHI $=5.6$
Cranberry juice $\mathrm{pH}=2.5$
Goji Berry juice $\mathrm{pH}=8.4 \quad$ Lemon juice $\mathrm{pH}=2.3$

$$
\begin{aligned}
a c i d+b a s e= & \text { neutral solution } \\
& (\text { sect }+ \text { water })
\end{aligned}
$$

2. The following table shows the pH of various products. Use the table to answer the questions.

a- Which substance is the most acidic? hydrochloric acid
b- Which substance is neutral? water
c- You would like to neutralize 40 mL of cabbage juice. You are told the only thing available to neutralize the cabbage juice is the milk of magnesia. Explain if you would use more than 40 mL , 40 mL exactly or less than 40 mL to neutralize the cabbage juice.

3. The following table gives the colours of four different indicators in solutions with pH values ranging from 0 to 14 . Use the table to answer the following questions.

a- What is the pH of an unknown solution if it turns yellow with indicator 1 and green with indicator 2?
b- If an unknown solution turned blue with indicator 2 and orange with indicator 3 , what colour would indicator 4 become in this solution? Colourless.
4. Terry has prepared colour charts for two indicators as shown below. Answer the questions using the chart.

a- Which indicator would allow you to more easily identify acids, bases and neutral solutions?
b- What is the pH of a substance if it turned colourless when mixed with indicator 1 and yellow when mixed with indicator 2? 5
c- Using indicator 2 , which colour gives you a result in the acidic, basic and neutral range?
5. The following table shows the colour of a universal indicator in solutions of varying pH values.

$\mathbf{p H}$	Colour
0	red
1	red
2	red
3	red-orange
4	red-orange
5	orange
6	yellow
7	yellow-green
8	green
9	green-blue
10	blue
11	blue
12	blue
13	blue

a) What colour would the indicator be in a very strong alkaline detergent? blue
b) What colour would the indicator be in the weakest acidic drink? yellow
6. Corn grows best in soils with a pH of 6 . When the soil pH is too low, the corn's growth is stunted. Alicia noticed that her corn crop is not growing well. She tests the pH of the soil and discovers that it has a pH of 4 . Which of the following statements describes the change that must occur so that the corn has ideal growing conditions?
A) Alicia must make the soil 100 times more acidic.
(B) Alicia must make the soil 100 times less acidic.
C) Alicia must make the soil 2 times more acidic.

D) Alicia must make the soil 2 times less acidic.
7. Following a chemical spill, the contaminated soil reaches a pH value of 12 . After a few days, a neutralization process begins and a second test is conducted. Its results show that the pH of the soil has become 10 times more acidic. What is the pH value after the second test?
A) $\mathrm{pH}=1$
B) $\mathrm{pH}=7$
C) $\mathrm{pH}=9$
D) $\mathrm{pH}=11$
8. In the laboratory, you are given two acid-base indicators and a colourless solution with an unknown pH .

pH	1	2	3	4	5	6	7	8	9	10	11	12

When you add a drop of each indicator to the colourless solution, it turns yellow. What is the pH range of this solution?
A) Between 1 and 4
B) Between 1 and 5
C) Between 3 and 4
D) Between 3 and 5
9. Place the substances listed below in increasing order of pH . aced \rightarrow ba se

$$
\text { Distilled water } \quad \text { Soap } \quad \text { Lemon juice } \quad \text { Rainwater }
$$

A) Distilled water - Soap - Lemon juice - Rainwater
B) Lemon juice - Rainwater - Distilled water - Soap
C) Soap - Lemon juice - Rainwater - Distilled water
D) Lemon juice - Distilled water - Soap - Rainwater

10. Scientists discovered that a certain bacterium grew best in a slightly alkaline (basic) environment. The table below gives the pH value of each environment in which this bacteria was cultivated.
pH Values in the Environments Tested

Environment	pH
1	2.4
2	6.1
3	$(7.6$
4	13.2

In which of these environments did this bacteriumrgrow best?
A) Environment 1
B) Environment 2
C) Environment 3
D) Environment 4
11. Th pH of contaminated soil was 10 . The soil was decontaminated using a neutralization process. After a few days, a second test is conducted. The results show that the pH of the soil has become 10 times more acidic. What is the new pH of the soil?
A) $\mathrm{pH}=1$
B) $\mathrm{pH}=7$
C) $\mathrm{pH}=9$
D) $\mathrm{pH}=11$

12. The most widely sold dairy products on the market are pasteurized milk, cheese and yogourt. The pH of each of these products is given below.

Dairy product	$\mathbf{p H}$
Cheese	7.5
Pasteurized milk	6.5
Yogourt	4.5

yegourt
The most acidic of these products is how many times more acidic than the pasteurized milk?
A) 2 times more acidic
C) 20 times more acidic
B) 10 times more acidic
(D) 100 times more acidic

13. The table below provides information on the pH values of three solutions.

Solution X	Solution Y	Solution Z
pH 7	100 times more acidic than solution X	10 times more basic than
solution Y		

Which of the following choices presents the solutions, in order, from the lowest to the highest pH ?
A) $X-Z-Y$
B) $\mathrm{Y}-\mathrm{X}-\mathrm{Z}_{5}^{4} \mathrm{Y}_{4} \mathrm{Y}^{4} \mathrm{C}$ (C) $\mathrm{Y}-\mathrm{Z}-\mathrm{X}$
D) $Z-X-Y$
14. You find a bottle containing an unidentified liquid. By using universal indicator paper, you determine that the pH of this liquid is 11. You have to neutralize it before disposing of it. Which of the following methods can be used to neutralize the liquid?
A) Add a solution of NaOH
C) Add distilled water
(B) Add a solution whose pH is 5
D) Add a solution whose pH is 8
add an acid.
15. Below is the colour chart for an indicator.

Maria carries out the following experiment: she numbers four test tubes 1 to 4 and into each adds 2 mL of the following substances and two drops of the indicator.

EXPERIMENT		
Test-tube	Substances	RESULTS
$\mathrm{N}^{\circ} 1$	2 mL of Drano solution	Colours
$\mathrm{N}^{\circ} 2$	2 mL of vinegar	indigo-blue
$\mathrm{N}^{\circ} 3$	2 mL of soft drink	clear red
$\mathrm{N}^{\circ} 4$	2 mL of sodium bicarbonate solution	orange
Which answer lists the order of the test tubes from least to		

Which answer lists the order of the test tubes from least to most acidic?
A) $1,2,3,4$
(C) $1,4,3,2$
B) $2,3,4,1$
D) $4,1,3,2$
16. The following table gives the colours of a universal indicator. A few drops of the indictor is added to a sample of solution. The solution turned purple. Which of the following correctly describes the solution?

pH	1	3	5	7	9	11	13
colour	red	orange	yellow	green	Turq- uoise	blue	Purple/

A) It is a strong basic solution
C) It is a strong acidic solution
B) It is a weak basic solution
D) It is a weak acidic solution
17. The pH of lakes must be between a minimum of 6.5 and a maximum of 8.5 to maintain proper aquatic

Which of the statements below completes the following sentence correctly? If the pH of the water in a lake is 5.5 , this $\mathrm{pH} .$.
A) Is 1000 times more acidic than the maximum acceptable pH .
B) Is 30 times more acidic than the maximum acceptable pH .
C) Is 3 times more acidic than the minimum acceptable pH .
D) Is 1 time more acidic than the minimum acceptable pH .

