Stoichiometry Practice #2

1. Consider the following equation:

$$3 \text{ Ag} + 4 \text{ HNO}_3 \rightarrow 3 \text{ AgNO}_3 + \text{ NO} + 2 \text{ H}_2\text{O}$$

$$63.029$$

$$18.029$$

What mass of nitric acid, HNO_3 , is necessary to obtain 6.0 moles of water?

2. Using the equation below, answer the following questions.

 $2 H_2 + O_2 \rightarrow 2 H_2O$ 18.029a- If 4.0 moles of H_2 gas are reacted, how many grams of water would be produced?

b- If 2.45×10^2 molecules of oxygen gas are available, how many moles of H_2 would

react with it?
$$2.45 \times 10^2$$
 molecules $2H_2 + O_2 \longrightarrow 2H_2O$

$$8.135 \times 10^{-22}$$
 \longrightarrow $\boxed{8.14 \times 10^{-22} \text{ mol}}$
3. a- Write a balanced equation for the combustion of methane gas (CH₄) to form

carbon dioxide (CO_2) and water vapour (H_2O).

b- If 124.5 g of CO2 is produced, how many moles of CH4 must have been reacted?

$$24.5g$$

CHy + $20_2 \rightarrow 20_2 + 2H_20$
 $16.05g/mcl$

44.01 g/mcl

4. a- Balance the equation below:

2 Al + 3 F₂ →2 AlF₃

b- How many moles of aluminum react with 4.5 moles of fluorine?

c- If 42 g of aluminum fluoride, AIF3 are produced, what mass of aluminum is

- reacted with fluorine? $2AI + 3F_2 \rightarrow 2AIF_3$ 26.98 g/mcl 2
- d- How many moles of fluorine will take part in the above reaction to produce

 33.6 g of aluminum fluoride?

 2 Al + 3 F2 2 Al F3

 389/mol 83.989/mol.
 - 33.6g AIF3 × [mol AIF3] × 3 mol F2 > 0.6001 > [0.600 mol F2]
 83.98 AIF2 2 mol AIF3
 - 5. a- Write a balanced equation for the reaction of nitrogen gas (N_2) and hydrogen gas (H_2) to produce ammonia gas (NH_3) .

N₂ +3H₂ ->2NH₃ 2.029/mol 17.049/mol

b-If 212.5 g of ammonia gas is produced, how many molecules of hydrogen gas must have reacted with the nitrogen?

212.5g NH₃ × 1mol NH₃ × 3 mol H₂ 6.023 × 10²³ molecules H₂

17.04g NH₃ × 2 mol NH₃ 1 mol H₂

1.12666 × 10²⁵ → 1.127 × 10²⁵ molecules H₂

6. Solid copper can be prepared from copper axide by reaction with

6. Solid copper can be prepared from copper oxide by reacting with ammonia, according to the following unbalanced equation:

$$3 \text{ CuO} + 2\text{NH}_3 \rightarrow \text{N}_2 + 3\text{Cu} + 3\text{H}_2\text{O}$$

How many moles of ammonia (NH3) are needed to obtain 9.0 moles of copper (Cu)?

7. Iron (Fe) and carbon monoxide (CO) are produced when iron oxide (Fe₂O₃) reacts

Fe₂O₃ +3C
$$\longrightarrow$$
 2 Fe +3CO
×9
159.70
55.85
2
50mol Fe. 1 mol Fe₂O₃ , 159.705 Fe₂O₃ = 3992.5 g \longrightarrow 4000g Fe₂O₃
2 mol Fe | 1 mol Fe₂O₃ | 1 mol Fe₂O₃ = 3992.5 g \longrightarrow 4000g Fe₂O₃

8. 200.0 (mL of NaI whose concentration is 2.0 M are reacted with Pb(NO3)2 in order to obtain the precipitate PbI2 according to the equation below. Calculate the mass of PbI₂ obtained.

$$200.0 \text{ ml}$$
 $\times 9$
 $2 \text{ NaI} + \text{Pb(NO}_3)_2 \rightarrow \text{PbI}_2 + 2 \text{Na(NO}_3)$
 149.899 mol 4619 mol

- (1) 2.0 mol x mol -> 0.4 mol
- 2 O.4 mol NaI , Ind PhoIz , 461g PhoIz 92.2 ->
 2 mol NaI Ind PhoIz 929 Pb 2
 - 9. When a solution of aluminum hydroxide, Al(OH)3, reacts with a solution of sulfuric acid, H_2SO_4 , the result is a salt, aluminum sulphate, $Al_2(SO_4)_3$ and water, H_2O . The reaction is seen by the following balanced equation:

$$\times 9$$

 $2 \text{ Al}(OH)_3 + 3 \text{ H}_2SO_4 \rightarrow \text{ Al}_2(SO_4)_3 + 6 \text{ H}_2O_4$
 $\times 9$
 \times

What mass of aluminum hydroxide is required to produce 100.0 g of aluminum sulphate?

10. Sandy neutralizes 200mL of HCL at a concentration of 1.5mol/L using $Ca(OH)_2$ according to the following equation: $\times g$ 2HCl + $Ca(OH)_2$ $\rightarrow CaCl_2$ + 2 H₂O

36.46g/mcl $+ Ca(OH)_2$ $\rightarrow CaCl_2$ + 2 H₂O

After the neutralization, she allows the water from the beaker to evaporate. What is the mass of the CaCl₂ that will be left in the beaker?

- 1.5 mol x mol 0,3 mol HC1
- 2) 0.3 mol HC1 x 1 mol CaCl2 x 110.989 CaCl2 16.647 2 mol HC1 1 mol CaCl2 2 20g CaCl2

11. When 200mL of HCl is mixed with NaHCO $_3$, 22.01g of CO $_2$ is produced. What was the concentration of the HCl solution used to produce this much gas?

$$HCl_{(aq)} + NaHCO_{3(s)} \rightarrow NaCl_{(aq)} + H_2O_{(1)} + CO_{2(g)}$$
36.469

12.01 + 2(16.00)
44.01 g

- 1 22.019 CO2 × 1 mol CO2 / 1 mol CO2 0,5001 + 0,5001 mol CO2
- 2) 0,5001 mol HC1 x mol 2,5006

3 mol/L HCI